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ABSTRACT

The concept that the magnetic flux, induced by moving charge or an
electrical current, moves with the charge carriers that induce it, is
explored. This idea was promoted as late as the 1960's by W.J. Hooper
and still remains a contested issue. Hooper claimed to have verified
this experimentally and also identified some fundamental qualitative
differences between types of electric fields distinguished by their
origin. An analytical investigation of these claims has been
undertaken.

This author has not been able to disprove Hooper's claims. It is
established that there are three types of electric fields. The first
due to a distribution of charge known as an electrostatic field. The
other two are associated with the two types of -electromagnetic
induction. The first type of induction is known as flux cutting and is
due to relative spatial motion with respect to magnetic flux. The
electric field resulting from this type of induction is the motional
electric field. This type of electric field has unique properties that
separate it from the other two. Experimentally, it is confirmed that
this electric field is immune to shielding due to the fact that
magnetic (not electric) boundary conditions apply to it. Motional
electric fields can also exist where the total magnetic field that
induces it consists of non-zero components that sum to zero. The other
type of induction is due to linking time changing magnetic flux.

Inclusion of the concept of magnetic flux moving with the current
or charge carriers that induce it into classical electro-magnetic
theory results in a small additional force between relative moving
charge that is not predicted by classical EM theory. This difference is
due to a motional electric field that surrounds all moving charge if
the idea of moving magnetic flux is subscribed to. This term is
dependent on the square of the relative velocity and is equivalent to
the term generated by special relativity when applied to relative
moving charge. Ampere electrodynamics also predicts the existence of
this force. Consequently, three incompatible and fundamentally
different models of EM effects yield the same results.
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ABSTRACT

The concept that the magnetic flux, induced by moving charge or an
electrical current, moves with the charge carriers that induce it, is
explored. This idea was promoted as late as the 1960's by W.J. Hooper
and still remains a contested issue. Hooper claimed to have verified
this experimentally and also identified some fundamental qualitative
differences between types of electric fields distinguished by their
origin. An analytical investigation of these claims has been
undertaken.

This author has not been able to disprove Hooper's claims. It is
established that there are three types of electric fields. The first
due to a distribution of charge known as an electrostatic field. The
other two are associated with the two types of electromagnetic
induction. The first type of induction is known as flux cutting is due
to relative spatial motion with respect to magnetic flux. The electric
field resulting from this type of induction is the motional electric
field. This type of electric field has unique properties that separate
it from the other two. Experimentally, it is confirmed that this
electric field is immune -to shielding due to the fact that magnetic
(not electric) boundary conditions apply to it. Motional electric -
fields can also exist where the total magnetic field that induces it
consists of non-zero components that sum to zero. The other type of
induction is due to linking time changing magnetic flux.

Inclusion of the concept of magnetic flux moving with the current
or charge carriers that induce it into classical electro-magnetic
theory results in a small additional force between relative moving
charge that is not predicted by classical EM theory. This difference is
due to a motional electric field that surrounds all moving charge if
the idea of moving magnetic flux is subscribed to. This term is
dependent on the square of the relative velocity and is equivalent to
the term generated by special relativity when applied to relative
moving charge. Ampere electrodynamics also predicts the existence of
this force. Consequently, three incompatible and fundamentally
different models of EM effects yield the same results.



CHAPTER 1
INTRODUCTION

Classical electromagnetic (EM) theory is a composite of pieces
developed by such notables in the history of science as Faraday,
Maxwell, Hertz, Lorentz and Einstein. The theory itself was originally
developed from empirical results and experimental evidence. Even though
the foundational development of the theory took place more than 150
years ago, the final chapters of EM theory have still not been written
and this body of knowledge cén still be an area for new discovery. As

technology progresses and instrumentation becomes more sensitive,

. experimental evidence is obtained that still raises questions and

paradoxes concerning the foundational aspects of EM theory. This is
evidenced by the many parts of EM theory that alone are brilliant but
when combined, do not fit into an easily understandable whole and do
not always yield consistent results when applied to problems. Many
authors {1,2,3;4.5] have pointed out inconsistencies and paradoxes in
the theory and have demonstrated differences in results when applying
one approach to a problem as compared to another.

Engineers and physicists have groped for a concise model and
package that works for all of the vast EM phenomena. Maxwell's
equations are the accepted answer to this need, but even they require
the user to have an extensive prior knowledge of the results he is

pursuing since they do not 1lend much physical insight into the
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mechanics of EM effects and can yield wrong results when applied
indiscriminately. In addition, unless one is careful in applying these
relgtionships [6,7], it is easy to exclude the common vXB term of the
Lorentz force equation and this term may not be negligible.

One specific area of EM theory that still causes confusiop [8,9]
is the law of induction - the 1linking factor between electric and
magnetic fields. It is commonly believed that Faraday's law of
induction and the corresponding Maxwell equations describe all forms of
induction and equates them, but this belief has been pointed out to be
incorrect by many experimenters. In fact, there are two types of
induction that must be treated separately [5,9]. The first is due to a
time varying magnetic field and the secpnd is due to relétive spatial
motion with respect to a magnetic field.

EM theory has its roots in experimental investigation and some of
the cornerstones of EM theory such as Faraday's Law, The Biot-Savart
version of Ampere's current Law and the Lorentz Force Equation are
based purely on experimental results. Ampere was one of the first to
develop a mathematical interpretation of these experiments. His
experiments involved measuring the forces between currents and the
results have been put into many forms. The most well known of these is
the Biot-Savart Law that establishes the force between two currents as
a function of their magnitudes, relative position and orientation.
Faraday's law states that the induced elect?omotive force (e.m.f.) in a
closed circuit is proportional to the time rate of change of magnetic
flux it encloses. The Lorentz equation describes the force on a charge

or an induced e.m.f. as a function of the magnitude of the electric
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field and magnetic field it sees and also the relative velocity with
respect to the magnetic field.

One researcher, W.J. Hooper [10], probed deeply into the topic of
classical EM theory and, after much experimentation, came to tﬁe
conclusion that there are three different types of electric fields.
One, due to a distribution of electric charge, and the other two are
associated with the two types of induction.

His major interest was investigating the physical characteristics
of the motional electric field that is associated with relative motion
in space with respect to a magnetic field. Hooper distinguished between
the electric field due to relative spatial motion with respect to a
magnetic field and the electric field Que to relative time motion with
respect to a magnétic field. Motional electric fields are due to
spatial not_ time motion with respect to a magnetic field. By adapting
an empirical approach to his work, Hooper obtained evidence that the
three types of electric fields have different physical characteristics
and, fherefore, should not be equated as is easy to do when using only
mathematical models. Hooper demonstrated by experiment that motional
electric fields are immune to shielding and can also exist where the
total magnetic field is zero. In addition, he argued that magnetic flux
is physically real and not just a mathematical model or a convenient
way to describe the effects of moving charge.

More significant, Hooper interpreteq the work of Cullwick [11]
that assigned inertia and momentum to a current as supporting the idea
that the magnetic flux (or field) induced by moving charge actually

moves with the charge carriers. Hooper's premise that the magnetic flux
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associated with a current drifts along with the charge carriers
composing the current is a simple one, but it has never been thoroughly
investigated. Although never proven [3] before instrumentation was
sensitive enough to measure it, it has some important ramifications and
a new investigation is warranted. Charge itself can even be modeled by
moving magnetic flux of spinning magnetic dipoles and a theory exists
[12] that charge is moving flux. There seems to be no way to disprove
that magnetic flux does not move with its source [12]). The most
important ramification of the moving magnetic flux idea is that this
assumption yields a motional electric field in the fixed reference
frame of the current that induces the magnetic field. This will be true
even if it is a dc current in a neutral conductor. Consequently, this
idea proposes that a motional electric field is associated with all
moving charge. To this author's knowledge{ Hooper (with possibly one
exception [13]) has been the only one to actually measure this effect.
For moderate charge velocities, Special Relativity, when applied to the
moving charge composing the current, supports his conclusion [14].
Besides Special Relativity, a field-free, non-relativistic version of
the Ampere equation also supports Hooper's claims. It is ironic that
these two approachgs that avoid the use of magnetic fields give the
same mathematical results as Hooper's theory that is centered on the
physical reality of magnetic fields. The moving magnetic flux theory
may have advantages, though, in its ability to characterize the force
between relative moving charge as due to a motional electric field

which by definition is a magnetic force (ie: E=vXB).
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This author has set out to investigate the claim that magnetic
flux moves with the charge that induces it. Originally an experimental
approach was attempted. But limitations in available hardware and
instrumentation needed to measure this small effect, has forced an
analytical investigation of this idea. What will be shown in this paper
is that Hooper's theory, with some clarifications the author pr;poses,
is equivalent to a rigorous application of special relativity at
moderate charge velocities (or to a second order approximation) and
identically equivalent to an alternate field-free version of the Ampere
equation [15]. Although the best way to ‘'get a hold of' an
electromagnetic field is through | its effects, the analytical
investigation'presented here does claqify certain issues and raise some
significant points.

In Chapter 2, Hooper's experimental work is reviewed and evidence
is presented that supports his claims. Chapter 3 analyzes various
configurations of moving charge using three different formalisms of
classical electrodynamics. The results generated in Chapter 3 are
reviewed in Chapter 4 and a set of results is chosen as a baseline for
further comparisons. Chapter 5 applies Hooper's, or the 'moving
magnetic flux', approach to the same problems looked at in Chapter 3
and compares these results to the chosen baseline. A magnetic drift
velocity that matches the baseline is derived. Advantages and
disadvantages of the moving magnetic flux approach are then discussed
in Chapter 6. In Chapter 7, conclusions about the work are drawn and
experiments that would discriminate between a motional electric field

effect and special relativity effects are suggested. It is shown that
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the motional electric field approach to determining the forces between
relative moving charge is a valid one from a mathemétical standpoint
and may yield additional insight into the physical nature of the force
between relative moving charge. Some Kkey experiments that may
differentiate between a motional electric field effect and a gimilar
effect due to special relativity are suggested and described.

This work appears significant in 1light of recent work in the
detection of magnetic monopoles [16], effects in field free regions as
described by quantum gauge theory [17], and momentum possessed by
static EM fields [18]. The moving magnetic flux idea may also help
explain why dissimilar materials react differently to gravity that has
now required the postulation'of a small electric effect called 'Hyper-
charge' or a fifth force that is a function of atom composition
[19,20]. The linear motion of flux down a conductor may also helﬁ
explain longitudinal propulsion associated with currents;an effect that
has yet to be explained in terms of Lorentzian forces [21,13]. In fact,
the incorporation of moving magnetic flux into EM field theory may help
resolve the differences between Maxwellian field theory and Ampere-

Neumann field free electrodynamics of materials.



CHAPTER 2
THE WORK AND THEORIES OF W. J. HOOPER

This investigation of motional electric fields associated with
moving charge was stimulated by the work of W. J. Hooper in this same
area. His contributions to the topic of EM theory involve the
experimental investigation and description of motional electric fields,
differentiating them from other types of electric fields, and his claim
that a motional electric field is associated with all moving charge.
-Hooper's claims can be summed up by two premises. The first is that a
motional electric field is physically different than an electrostatic
field or an induced electric field due to a time changing magnetic
field. His second premise is that a motional electric field is
associated with all moving charge and this is due to the fact that the

magnetic flux induced by moving charge moves with the charge.

Uniqueness of Motional Electric Fields

A regression at this point to define thoroughl& motional electric
fields is warranted. Simply stated, a motional electric field is the
induced electric field due to relative motion with respect to magnetic
flux [22]. It is described by the Lorentz force equation

E = vXB E2.1.1
where E is the induced motional electric field and v is the velocity of

motion with respect to the magnetic field B.
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Hooper stated and claimed to have proved experimentally that this
motional electric field is different than the electric field that
arises from a distribution of electric charge known as an electrostatic
field and also different than the electric field due to time rate of
change of a magnetic field.

In the classical sense, a motional electric field is the force per
unit charge on a charge moving with respect to a magnetic field. It is
considered a magnetic force and acts normal to both the magnetic field
and the velocity of the charge. This is different from an electrostatic
force that acts in line with the electric field. Another difference is
that a magnetic force can not change the energy of the charge, only
change its direction. This is even true in the case of a 'moving
magnetic field' where there is a motional electric field produced. The
magnetic field does not do work, but the source of the magnetic field
or prime mover does work [23].

The differences between motional electric fields and those due to
a time varying magnetic field are not always clear. Although a non-
uniform moving magnetic field is mathematically equivalent to a time
changing magnetic field,

dB  dx _dB
dx dt dt

E2.1.2

the physical characteristics of the effects they generate are
different. The emf generated in a physically moving closed circuit can
usually be described by Faraday's law since the amount of flux enclosed
by the circuit is changing with time. The motional electric field is
due to flux cutting while the electric field generated from a time

changing magnetic field is due to flux linking. Although they are



9
mathematically equivalent for certain geometries, Hooper claims that
they are two different effects and should not be confused. This is in
agreement with others who have rigorously investigated induction [8,9].

The work of Moon and Spencer on induction [9] helps to clarify
this somewhat confusing issue. Their electrodynamic theory consists of
modeling electromagnetic phenomena purely as forces between charges.
This avoids the field concept all together. In their work, they show
the equivalence of the flux cutting force described in the Lorentz
force equation to a force due purely to relative motion between charge.
The force due to flux linking is shown to be equivalent to a force
between charge that is due purely to relative acceleration. From their
work, it can be surmised that the flux cutting and flux linking are
different phenomena since they stem from different fundamental physics.
Flux cutting is equivalent to relative motion between charge while flux
linking is due to relative acceleration between charge.

Another distinguishing characteristic of the motional electric
field is its immunity to shielding. Hooper verified this with
experiments. They consisted of showing that the motional electric field
cannot be electrostaticly shielded by a faraday cage held at a fixed
potential enclosing the detection device [10]. His experiments were
also extended to magnetostatic shielding and his representative
experiments concerning the shielding of motional electric fields have
been duplicated and verified at Montana State University [24]. It was
concluded that a motional electric field cannot be shielded by any
common means. As long as magnetic flux 1is cut, an emf is produced

independent of the material cutting the flux. This agrees with
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conclusions arrived at by Maxwell [25]. The only way to shield a
material from a motional electric field 1is to use a magnetic shield
(high pu material) around the source of the magnetic flux - in effect
containing the magnetic flux at its source. When a magnetic shield is
not around the source but around an object that is to be shielded, no
shielding takes place since all the shield does is redirect the flux
and the shielded area still cuts flux. These conclusions are not
startling if one remembers that motional electric fields are a magnetic
effect.

Another significant finding of Hooper was the measurement of real
effects in field free regions. This may seem like a side-light to his
work that is of interest here, but this effect is important and
directly associated with motional electric fields. Hooper found that an
analysis of the sum of the parts does not always equal the results of
an analysis on the whole. A simple experiment that verifies this
consists of subjecting a conductor to two different magnetic fields
that are equal and opposite,

B = —B . E2.1.3

and thus sum to zero,

Bl+32 = Bt= 0 . E2.1.4

If they also have equal and opposite relative velocity to a conductor,

veE v, E2.1.5

the total E field is not equal to zero.
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Not apparent at first glance, the correct result is obtained by
application of the Lorentz force equation using simple superposition.
Thus

= = ]
Et VIXB1 + V2X82 2vB n " E2.1.6

An incorrect value is obtained by using the total magnetic field,

Et # (VXBt =0) . E2.1.7

In this case, even though the B fields cancel, the vXB effects add. A
motional electric field due to flux cutting is generated even in an
area where the total magnetic flux is zero. Hooper incorporated this
effect in his experiment that generated a radial motional electric

field using no moving parts.

Moving Magnetic Flux

Hooper's research and experimental work 1led him to draw the
conclusion that the magnetic flux associated with a current actually
moves with the charge carriers that compose the current. This
assumption leads to the conclusion that a force exists between a dc
current in a metallic conductor and an external stationary charge. This
is equivalent to saying that a radial electric field surrounds a dc
current even in a metallic conductor where charge neutrality (a balance
between positive and negative charge numbers) is maintained within the
conductor. This conclusion points out a interaction or equivalence of
electrodynamic and electrostatic forces. This is in variance with the
Biot-Savart Law and classical EM theory. In effect, this premise is

equivalent to a type of 'dc induction'.
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This force on stationary charge in the presence of a dc current
(Figure 1) can be described by the Lorentz equation if one assumes that
the magnetic flux due to a current,

B = I/(27t€czr)!0 E2.2.1

Where:

is the current magnitude in [amps]

is the permittivity of free space [farads/meter]

is the velocity of light in free space [meters/sec.]
is the radial distance from the center of I [meters]

2O MM

is drifting or moving with respect to the stationary charge at the
drift velocity of the charge carriers that compose the current.

vV, =V = -va E2.2.2
e z

Figure 1. Force on charge adjacent to dc current element.

B = I/(21r€c"’r)!0 ]
cu t
rren C > .m—-_<»-—-—+ z
I:q =N a /
e e z r
test charge *Q

The force on the charge then becomes

- 2o 2p)a = -Cc2r)2 .2.
F Q(VBXB) V!ZXI/(BnEc r) o Iv/(2r€c?r) r E2.2.3

which is a finite value if Hooper's assumption that the magnetic flux
has a finite velocity associated with it is accepted.

This idea that magnetic flux drifts along with its source is still
an unresolved issue in EM theorQ. Although not exactly the same issue,
it is worth mentioning that there has been an on-going debate initiated
by Faraday with his axially symmetric 'disk' generator of whether the

magnetic flux rotates with an axially symmetric source. This debate



13
even intrigued Hertz [12]. Hooper's claim that magnetic flux moves with
the charge carriers that comprise a current, has never been addressed
with the same zeal as the rotating flux controversy. The most recent
thought on the Faraday disk generator controversy is that whether the
flux rotates with its source or not cannot be proven and either
assumption yields the same results. This idea is suggested by~Djuric
[12] who has proposed a model of electric charge based on spinning
magnetic dipoles. What most of these researchers have failed to realize
and investigate thoroughly is one of the properties of the motional
electric field, specifically its reaction to shielding. It seems that
an experiment can be devised where shielding is wused to distinguish
between a motional electric field and the electric field of a charge
redistribution caused by a motional electric field. Thus the
controversy may be resolved once and for all. So far, it appears that
most have overlooked the properties of motional electric fields. An
example of this oversight is Djuric's model of charge based on spinning
magnetic dipoles. It is sound mathematically, but fails to take into
account the physical characteristics of the motional electric field.
These characteristics would rend the charge of his model totally immune
to shielding which is not in agreement with the known properties of

electrostatic charge.

Experimental Work of W.J. Hooper

Hooper conducted many experiments that supported his claims
concerning the uniqueness of the motional electric field, especially

concerning the issue of shielding. His experiments consisted of a
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detection system that was usually a conductor and an ammeter that would
measure the induced current in the conductor when it was passed through
a magnetic field. This effect is well understood and is the principle
of inducing an emf from cutting lines of magnetic flux. What is unique
in Hooper's experiments is his investigation of various types of
shielding. He was wunable to shield the effects measured in his
detection system by any type of electrostatic shielding such as a
grounded faraday cage. Additionally, he could not shield his detector
by employing any type of magnetic shielding such as high permeability
iron. He concluded that the motional electric field due to relative
motion between a conductor and a magnetic field was totally immune to
shielding of any sort and penetrated all materials equally. These
conclusions are in agreement with classical EM theory that defines a
motional electric field rigorously as a magnetic force per charge, but
his conclusions bring to attention certain characteristics of motional
electric fields that are often overlooked.

The premise that there is a motional electric field associated
with all moving charge lends itself to a straightforward experimental
test. The concept is a simple one and the experiment is also simple in
idea, but in practice has proven to be difficult strictly because the
magnitude of the effect is so small.

The experiment Hooper used consisted of a source of moving charge
and a detection system. The source copsisted of a non-inductively
(windings arranged so that the individual magnetic fields produced by
each winding cancel and sum to zero) axial wound copper coil in a

cylindrical configuration (4020 turns) energized by a variable power
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supply. The detection device consisted of an electrostaticly shielded
(grounded faraday cage) cylindrical capacitor around the coil and an
electrometer to measure the voltage induced in the capacitor by the
motional electric field that surrounds the coil. His experiment and
device is well described by his patents and papers [26,27]. A block

diagram is shown in Figure 2.

Power Supply

(i

r—
-

Capacitor

Electrometer

Coil

e
e ——

L

Figure 2. Block Diagram of Hooper's Experiment

Since Hooper's premise is contingent upon experimental proof, it
is important to analyze a sample data point. The total magnetic field
generated by Hooper's generator is

E2.3.1

Where:

ax=10"" permeability of free space [Henrys/meter]

= 4020 turns

= current [Amps]

radial distance from center of coil [meters]

= unit vector in © direction [cylindrical co-ordinates]

w2

()
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The radial electric field surrounding the generator is calculated with
the Lorentz equation (Equation 2.3.1). Rewriting this equation with the

appropriate values of B and v gives

E=v 22X UNI ,  _-vuNI E2.3.2
z 2rnr O 2nr r

To determine the voltage difference that the cylindrical capacitor
sees, the electric field must be integrated between the two plates of

the capacitor.

_ [r2 -vuNI _ ~VuNI |
vV = Irl S dr = o In(r2/ri1) E2.3.3

The distances from the center of the coil to the plates of the

capacitors are, from Hooper's laboratory notes [28].

OD of inner cylinder = 0.10265 [Meters]

0.10615 [Meters]

ID of outer cylinder
The electron drift velocity' must also be obtained. This velocity
depends on the conducting material, charge carrier mobility, charge
carrier density, and the electric field applied to the material. For
copper, at room temperature, a velocity of 0.02 meters per second is an
accepted value. Héoper-derived a value of 0.0176 meters/second [29,30]
using Fermi-Dirac statistics and used this as a comparison when
measuring drift velocity of the electrons in the copper coil with his
generator. Using all of the proper values, equation 2.3.3 gives for a
current of 30 Amps

V = 14 pVolts
This compares favorably with some of his measured results and helps to

confirm that the magnetic flux moves with the charge carriers. The

result would be zero if the flux did not move.
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Aspects of his experimental results that are significant are the
characteristics of his data for a given test. He found that the voltage
measured had a parabolic dependence on current for tests run at room
temperature. If the electron drift velocity increases with current this
relationship would result. This can be explained by assuming a\linear
relationship between applied voltage to the generator and current flow
in the generator (this would be true for a constant temperature where
the resistance of the coil did not change with applied voltage) and
assuming that the number of charge carriers and their mobility is a
constant for a given test and temperature. Since the drift velocity is
equal to the electron mobility times the ;pplied electric field, the
drift velocity appears to increase linearly with current. The result of
this is that the Iv term in equation 2.3.3 actually is qv2? (i.e.
parabolic in v) where v is linearly proportional to the current, I.
Hence the ensuing parabolic relationship between measured voltage and
applied current is obtained.

One other detail concerning Hooper's results needs to be checked
and that is whether the voltage on the capacitor can actually be
measured. The nature of this effect requires an electrostatic
measurement of the voltage on the capacitor. This requires a high
impedance electrometer. Hooper used a device that could measure charge
as small as

Q=10 =16 coulombs

The amount of charge accumulated on the capacitor must be calculated to
determine if it exceeds this value. The capacitance of the detector is

given by Hooper as 285 pico-farads. The charge accumulated on the
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capacitor for a voltage across its plates of 1 pVolt is 2.85 times
above the limitations of the electrometer used. So it appears that the
measurements made are physically possible.

The results of Hooper's experiments support his theory in that
applying his assumption with the Lorentz equation and using a typical
electron drift velocity for copper at room temperature a result is
obtained that agrees with experiment. His results have a squared
dependence on current that makes sense if the number of charge carriers
remains a constant for varying currents and for the range of

temperatures that this relationship held.
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CHAPTER 3
CALCULATIONS OF FORCE BETWEEN MOVING CHARGE

To establish a baseline of results to compare to the.oning
magnetic flux model, the most accepted and commonly used analytical
tools used to determine the force between relative moving charge and or
current elements are explored here. Three different methods are
employed to calculate the force between two current elements or two
systems of moving charge (designated 1 and 2). The goal is to establish
confidence in a set of results that the moving magnetic flux approach
can be tested against in a later chapter. The three methods explored
here include the classical method of the Biot-Savart law analysis of
Ampere's experimental results (and it's equivalent, the Lorentz force
equation), Special Relativity applied to the moving charge carriers
that comprise the current, and a field free interpretation of Ampere's

experiments derived by Moon and Spencer. From this point on, the three

methods will be referred to as the Biot-Savart law, Special Relativity,

and Moon and Spencer.

To cover the entire spectrum of combinations of moving charge and
vet retain visibility and a realistic number of combinations of moving
charge and calculations, the moving charge will be modeled as parallel
in-line current elements of both a netallic.and ionic nature, electron
beams and stationary point charges. All configurations are chosen as

co-linear charge distributions or currents since this eliminates much
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complexity of geometry, and makes the effects due purely to the motion
of charge obvious.

In total, fifteen cases are examined using the three different
analysis methods. Table 1 1lists the fifteen combinations of moving
charge that are investigated and Table 2 details a pictorial
representation of the fifteen cases. The cases are designated by Roman
numerals I through XV, each one being a unique configuration of moving
charge in location 1 with respect to location 2. A metallic conductor
is designated by a 'm' in Table 1 while an ionic conductor is
designated with a 'i'. An electron beam is designated with an e and a
stationary point charge by a '*'. Both situations of current 1 and 2
flowing in the same direction and opposing direction are examined. In

Table 1, the opposing current configurations are designated by an 'o'.

Table 1. Combinations of Moving Charge Investigated

‘Case #' Descriptors: m=metallic, i=ionic, e=e-beam, |
i % *=stationary charge, o=opposing direction

1 ! Charge configuration 1: %Charge configuration 2: |
1 m m
! Il m ! m,o I
\ III | m sa * ;
LoIv | i i *
¢ v ; e

. VI i : *

; VII m i

! VIII | m i,o0

! IX ! m e

: X | m ! e,o

\ XTI i E e

LOXID i % e,0 y
[ XIII | e ! e
TOXIv o e e,o

ow e *

il i A
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In Table 2 the linear charge densities are actually represented by
a series of pluses (+++-++++++) for positive charge (gp) and a series
of minuses (----------- ) for negative charge (qe). The magnitudes of
the charge velocities are also given in Table 2 and their directions

are shown with a -> or a <-. The resulting currents and their

directions are also shown.

Table 2. Pictorial Representation of Moving Charge Combinations

Case # Charge Configuration ;

3 o1 v=0 bttt rt bbbttt

: i v e

I

? Co2: v=0 NI SR TS R RS,

. : \ (= mm e

i i v=0 B RS S RS :

§ ? v = —mm e i

e

. 52 v=0 bttt r bbbt I=qv |
3 t
i vV ememmmmmmmm— e e ——— -> <~ ]

u 5 ]

; i = "

i g 1: v=0 +++++++++++++r+++H++++++ I=qv i

i } v <= —mmmm e ->

111

j " 2: wv=0 + I=0 |

1 =T v=kv th b trrttrt bbbt b =D I=qv

i | il G- e ->

IV g

i L2 v=kv B o o T S S I=qv |

! : A ->

i ? 1: v=kv ++++++++++++tH+F 4+ =D I=qv

! i}

; i V=RV (- ——mmm—m————m e -> |

! i I

g v |
P2 B o B I=qv |

: N A I -> < |

j ; . i

: ﬁ 1: v=kv Sttt ttb bttt bbb bt =D I=qv i

: § VoY e =ttt => f

ooV
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Table 2. continued

’; ; 1: v=0 + bttt ttttt bt b bbbttt I=qv |
i : I ->
© O VII @ #
{ i 2: v=kv B o o o S SRR RS SIS I=qv ?
Zj P B e e ->
: i 1: v=0 B E T S RS I=qv #
: ' e I -> ]
CVIID ,
| 2 V=KV <= ++tttttttttt bbbt b bttt I=qv
VeBU e e = <=
i
é 1: v=0 +H+++t+tttt ottt + I=qv é
V=V K= s - F
IX |
127 VRV e e I=qv |
% 1: v=0 B s e o o T S o e I=qv g
? ) v=v i e et ->
PX
' 2 e A ->  I=qv |
| <
§ 1: v=kv 4t +++++tt et =D I=qv ?
{ A i -> ;
I XI
y 2 T R« e e I=qv |
- ;
? P v=kv T b o o o o ST S SR U NSE R I=qv |

? ; P - o R e ->
¢ XIT ¢ ;
! 2 VAV ¢ e ->  I=qv !
| <
5 P 1: vay g e I=qv |
L XIIT | —= |
! B: WEY e s I=qv |
?i o
b e I=qv |
XIV | ->
1 28 VAV e ->  I=qv |
| - < |
i i
i !
I T A I=qv |
Xv ! ->
L2 v=0 ¥ I=0 ‘
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To yield results that are directly comparable between the fifteen
cases, the currents (I) and line charge densities (q) are constant for
all current elements; regardless of whether they are metallic or ionic
conductors or electron beams in nature. This is accomplished by setting
the current in the metallic conductor equal to q-:v (where q\is the
linear charge density of the mobile electrons in the conductor and v is
the electron drift velocity) and then matching this value in the ionic
and electron beam models. So, for the electron beam, the electron
velocity must be v and the linear charge density q to yield I=qv. On
the other hand, for the ionic conductor, there are both positive and
negative charge carriers that contribute to the current. For simplicity
and symmetry, in the ionic current case, the linear charge densities of
the mobile positive charge and negative charge are assumed equal. The
drift velocities are also equal and in opposite directions and are one
half the wvalue of the drift velocity in the metallic and electron beam
case. Consequently, the current in  the ionic conductor is
I=(q-%v)+(q %v)=q-v, the same result as the metallic conductor and
electron beam current. A cylindrical coordinate system is used with
currents flowing in the 2z direction, forces between current elements
are in the r (radial) direction, and magnetic flux due to a current
flowing in the 2z direction 1is in the ® direction. The symmetrical
geometry chosen always yields forces and electric fields in the radial
direction and magnetic fields in the . direction, so in most
calculations magnitudes of these quantities are used. Where vectors are
used, they are designated by bold lettering. The accepted sign

convention on current direction is used. That is, the direction of
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current is in the opposite direction of the flow of negative charge and

in the same direction as the flow of positive charge.

Biot-Savart Version of Ampere's current law

The most widely used and accepted method to calculate the force
between current elements is the Biot-Savart version of Ampere's current

law [24]. It is stated as

P = e B (b e e Xd12 E3.1.1

Where:

F2/1
B is the permeability of free space

is the total force on current 2 due to 1

I1 is current at 1: (constant in space)

12 is current at 2: (constant in space)

Qr is the unit vector along the distance vector

between 1: and 2:
R is the distance between 1: and 2:
dl1 is the incremental distance along current 1

dl2 is the incremental distance along current 2

Clearly, this method yields a zero value for the cases where the
charge distribution at location 1: or 2: does not yield a current.
These are cases III, VI and XV in Table 2 where the charge distribution
at 2: is a stationary point charge. Also, the lack of charge neutrality
of cases involving an electron beam as a current source requires an
additional force due to the electric field at 1:. This effects cases

XIII, XIV and XV in Table 2.
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Applying E3.1.1 on parallel currents of infinite length yields a
force per unit length as

f2/1= u1112/(2nr) [Newtons/meter] E3.1.2

in the radial direction where r is the distance between the two
currents. For currents flowing in the same direction this force is
attraction and is opposition for currents flowing in the opposite
direction. Expressing uw in terms of the dielectric constant and the
speed of light as 1/(€c?) and for the case of

I, =1, = q*v E3.1.3

the force per unit length between the two current elements becomes

f2/1 = q2(v/c)?/(2x€r) E3.1.4

Since cases XIII and XIV have a non-zero force due to their
electrostatic charge, they require the addition of the opposing

coulombic force q?/(2r€r) yielding :

Case XIII: f2/1

Case XIV: f2/1

g®(1-(v/c)?)/(2r€r) E3.1.5
g®(1+(v/c)?)/(2x€r) E3.1.6

Case XV has only the electrostatic term

F2/1 = Qq/(2n€r) [Newtons] . | E3.1.7

Another classical approach that yields the same results is the
application of the Lorentz force equation to the charge configuration
at 2:. The force on the charge at 2: depends on the magnitude of the
electric and magnetic field of 1: (E1 and Bl) and its relative velocity
of 2: with respect to 1:.

F E3.1.8

2/1 = 9p(Ey*vy, XB))

We can write the magnetic field B1 as Il/(2n€czr).
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Expressing the current in terms of charge and velocity

q2v2/1=12 E3.1.9

equation 3.1.8 can be written as

F +1112/(2n€czr) = q251+q2(v/c)z/(2n€r)

2/1 = %F E3.1.10
which is the same as the result of the Biot-Savart law.

In all cases in Table 1, except the last three, the electric field term
El is zero and the only force is due to the relative motion of g2 with
respect to the magnetic field of 1. This is a straightforward approach
and yields the exact same results as the Biot-Savart law when we assume
the magnetic field does not drift but is stationary in the reference
frame of the inducing current. This method will be wused later in
Chapter 4 when the moving magnetic flux approach is investigated. Table
3 summarizes the results of the Biot Savart 1law and also includes the

equivalent Lorentz force equation results when applied in the classical

sense.
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Table 3. Force Between Relative Moving Charge, Results of Biot-Savart
Law and the Lorentz Force Equation.

% Radial force between line charge, f [N/m]

Case #2 or line charge and point charge, F [N]

| Biot-Savart Equation

t:

i

Lorentz Force Equation |

g I é -q?(v/c)?/(2n€r) -q?(v/c)?/(2x€r) Z
E 11 % q?(v/c)?/(2r€r) | q?(v/c)?/(2r€r) E
FIII % 0 f 0 §
; v % -q?(v/c)?/(2xn€r) E -q*(v/c)?/(2r€r) %
\% ? q?(v/c)?/(2r€r) ; q?(v/c)?/(2r€r) ?
LI ? 0 ; 0 %
VI1I ? -q%(v/c)?/(2r€r) i -q?(v/c)?/(2n€r) i
VIII ; q?(v/c)?/(2n€r) % q*(v/c)?/(2r€r) é
IX é -q2(v/c)?/(2n€r) i -q2(v/c)?/(2x€r) %
X % q%(v/c)?/(2x€r) q®(v/c)?/(2x€r) ;
XI ; -q2(v/c)?/(2n€r) ; -q%(v/c)?/(2n€r)
; XII g q?(v/c)?/(2r€r) : q?(v/c)?/(2r€r)
% XIII § q?[1-(v/c)?]/(2x€r) % q®[1-(v/c)?]/(2x€r)
% XIV % q®[1+(v/c)*]/(2x€r) é q?[1+(v/c)?]/(2r€r)
; Xv § -Qq/(2rn€r) f -Qq/(2x€r)

Special Relativity Applied to Moving Charge

A more rigorous and exact approach in calculating the force

between relative moving charge is the wuse of Special Relativity as

applied to the electric fields of the charge. The increase in magnitude

of an electric field due to relativity can be interpreted as an
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increase in mass of the charge carriers and assuming the charge to mass
ratio is invariant. A second and more excepted interpretation considers
the reference frame as shrinking and the charge density increasing.
Either way, the same results are obtained; that the electric field of a
given charge distribution when viewed from a reference frame\that is
moving with respect to the charge distribution increases in magnitude.

The general expression [5§] of an electric field including the
Lorentz transformation term is

E' = (E + vXB)/Jd[1-(v/c)?] . E3.2.1
where v is the velocity of the primed (') reference frame with respect
to the non-primed reference frame. For velocities small compared to the
speed of 1light, the correction transformation can be approximated by
applying the binomial expansion theorem

(1-x)-" = 1 + nx + n(n+1)x2%/2! + ......

In this case, x=(v/c)? and n=% which yields to first order
1/3[1-(v/c)?]=1+%(v/c)? E3.2.2

This approximation will be used to simplify the calculation of the
total electric field of a moving line charge.

To illustrate the method of Special Relativity , case I will be
analyzed in detail and a general expression derived that can be applied
to all the other cases.

The current of 1 and of 2 can be broken up into two line charges,
one negative and one positive. This results in a four part problem to
calculate the force between two currents. The total force per length on
current element 2 due to 1 is

F E

- ' ' ' t
2/1 = 928 p1/p2 * Ele1/p1) * %e2(B'p1/e2 * Eleye2)

E3.2.3
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Where: qu is the positive line charge of 2
qe2 is the negative line charge of 2

E is the transformed E field due to the

pl/p2

positive line charge of 1, qpl' with respect

to the positive line charge of 2, qu
is the transformed E field due to the

]
B el/p2

negative line charge of 1, qel' with respect

to the positive line charge of 2

E is the transformed E field due to the

]
pl/e2’
positive line charge of 1, with respect to

the negative line charge of 2, qe2

E is the transformed E field due to the

1]
el/e2
negative line charge of 1 with respect to

the negative line charge of 2.

The process begins by calculating each of the transformed electric

fields. The electric field of pl with respect to p2 is

' = 27
E pl/p2 [1+x(vp2/p1/°) ] Ep1
Where: vpa/pl is the velocity of p2 with respect to pi
Epl is the electric field of line charge pl and is

equal to qpl/(2n€r)

This yields, upon combining

E' b1/p2 = 9pp (1% (v, /€)% 1/ (2m€r)

The electric field of el with respect to p2 is

' = 2.
k el/p2 [1+X(Vp2/e1/c) ] Ee1
Where: Vp2/e1 is the velocity of p2 with respect to el
Eel is the electric field of line charge el and is

equal to qel/(2n€r)

E3.2.4
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The combination yields

= 2
E qe1[1+2(vp2/el/c) 1/(2x€r) . E3.2.5

t
el/p2
The transformed electric field of pl with respect to e2 is

= [1+%(v /0)’]-3pl

E pl/el e2/pl

Where: Ve2/p1 is the velocity of e2 with respect to pi

Combining yields

E [1+%( /c)?]/(2r€r) . E3.2.6

U =
p1/e2 ~ Ip1 e2/pl

The transformed electric field of el with respect to e2 is

E’ = [1+%(v

z [ 3
el/e2 )% Eel

e2/el

Where: v

e2/e1 is the velocity of e2 with respect to el and

combining yields

E [1+%(v /c)?]/(2r€r) . E3.2.7

el/e2 qe1 e2/el
Summing E3.2.4, E3.2.5, E3.2.6, and E3.2.7 in E3.2.3 results in the
total force on 2 due to 1 as

Forn = qu{qp1[1+X(Vp2/p1/c)z]+qe1[1+2(vp2/e1/c)’]}/(2n€r)

* agplay [1+%5(ve, /002 Ivay, [1+%(v,, o /C) 1}/ (2nEr). .

This expression can now be applied to all cases, I-XV, by substituting
in the appropriate values of

1’ and v

91 Ye1r 9p2 Ye2' Vp2/p1' Vpzre1’ Vez/p e2/el’

These values for case I are

q,,"9 Vp2/p1~°
9e1=74 Vp2/e1™V
9,274 Vea/p1~"Y

=0

9eo="1 Ve2/el
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Equation 3.2.8 then becomes

Fz/1 = -q?(v/c)?/(2x€r)

For case II, the procedure is similar to case I, with the only
difference being in the values of relative velocities (since the
currents are flowing in different directions). Using the following

values of relative velocities

9,79 Vp2/p1=°
9e1774 Vp2/e1”"’
qp2=q ve2/p1=V

Qg1 ve2/e1=2v

calculating E's, and combining in E3.2.2 yields

F q{q/(2r€r)-q[1+%(v/c)?]/(2x€Er)

af{q[1+%(v/c)?]/(2r€r)-q[1+2(v/c)?]/(2r€r)}
q2(v/c)?/(2x€Er)

2/1

These two results are the same as those calculated from the Biot-Savart
law and are not surprising. What is interesting is the ability to
describe a common, low velocity phenomena such as the force between
current elements using relativity; specifically the correction factor
that is usually assumed small enough to be ignored for velocities much
less than the speed of light.

The next case involves the force that a stationary charge

experiences from a current element. In this case,

9p1"9 Vp2/p1~°
9e1="4 Vp2/e1”’
4,,=C Vez/p1~°
Qg0 Vez2/e1™?

equation 3.2.3 becomes

F2/1 = Q{q/(2x€r)-q[1+%(v/c)?]/(2n€r)} = -Qq(v/c)?/(4x€Er)



32

This is a non-zero result and is not expected even though it is on the
same order of magnitude as the force between current elements. It has
been pointed out [14] that the neutrality of a current carrying
conductor depends on the reference frame and this will become clear
when case VI is analyzed.

Case IV involves determining the force between current elements
that are in the same direction and ionic in nature. The relative

velocities in this case are

qp1=q vp2/p1=0
de1=71 Vp2/e1”"
qp2=q ve2/p1=v

0

Qep="4 Ve2/e1”
which are identical to case I. Ssince the 1linear charge densities are
the same, the result of equation 3.2.8 is also the same.

Fan

-q2(v/c)?/(2x€r)

Case V involves ionic currents flowing in opposite directions and

the relative velocities in this case are

qp1=q vp2/p1=v
91774 vp2/e1=o
A2 Ve2/p1~°

Qe2="4 Ve2/e1”"
which are symmetric to case IV and yield the same result but of
opposite sign.

P2/1 = q2(v/c)?/(2r€r) .
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Case VI is an ionic current and a stationary point charge. In this

case the relative velocities are

95,79 Vp2/p1 %Y
9 =74 vp2/e1=zv
qp2=Q ve2/p1=0
qe2=0 ve2/e1=o

and when used in equation 3.2.8, yield a 2zero result. In effect what
has been accomplished here is that the reference frame in which a
current carrying conductor is neutral has been determined. This same
result would be obtained by choosing a metallic conductor such as case
III, but finding the force on a point charge that was actually moving
along with the electrons at half the electron velocity.

Cases VII and VIII are current elements of mixed nature one

metallic and the other ionic. In case VII, the relative velocities are

qp1=q vp2/p1=}év
9e1=74 Vp2/e1=1'5v
qp2=q ve2/pl=’év
Qg1 ve2/e1=’Ev
and for case VIII
qpl=q vp2/p1=}éV
9e1=74 vp2/e1=}£v
qp2=q ve2/p1=55v
=1.5v

9279 Vez/e1
these values yield the same results as I and II or IV and V. Again
these are the classical results for the force between current elements.
As shown here, the nature of the current element for a charge neutral

conductor has no bearing on the outcome of the result.
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In contrast to this result, are the following cases IX - XV that
have at least one current element modeled as a charged particle
(electron) beam. For case IX, there is no positive charge distribution

in 2, so the applicable relative velocities are

qpl=q vp2/p1=0
9177 Vp2/e1™®
~qp2=0 ve2/p1=v
9e2=74 Ve2/e1”0

and the result becomes

f2/1 = -g?(v/c)2/(4n€r)

This result is exactly one half the value of the force between to
current elements if they where metallic instead of one metallic and one
an electron beam. Even though the magnitude and direction of the
currents are identical -to case I and the net charge of the electron
beam has no effect since the other current element is neutral, they
vield different results when using relativity.
Case X is the same as case IX but of opposite sign only.

Case XI and XII  involve the force between a current element that
is ionic in nature and an electron beam. Again the magnitude of the
currents are the same as case IX and one would expect the same results.

The relative velocities in this case are:

= =0
9p17d Vp2/p1
9e=74 Vp2/e1™V
qp2=q vez/p1=1.5v

Qep="4 ve2/e1=35v
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The result becomes

f2/1 = -q%(v/c)?/(2n€r)

for case XI and the opposite for case XII. This is surprising, since
the results are not the same as that for a metallic conductor and
electron beam that was obtained by using Special Relativity . What can
be concluded here is that the forces caused by currents flowing in
various media appear to be different. This will become even more clear
by checking cases XIII - XV.

Since the positive charge in both 1 and 2 for cases XIII-XV is
zero, there is only one relative velocity that applies and that is the
relative velocity between the two negative charge distributions.

For case XIII: ve2/e1=o'

This then becomes a purely static case and the result is

f2/1 = q%/(2x€r)

This case has been explored by others [4] as a paradoxical situation
for which classical theory can yield confusing results. In case XIV,
the electron beams are flowing in the opposite directions and the
relative velocity becomes

ve2/e1=2V

and the result becomes

f2/1 = q?[1+2(v/c)?2]/(2x€Er)

Again this is quite different from the resuits of the Biot-Savart law.
The results of case XV is also different from the result of the Biot-

Savart law and is

Fy,q = Qal1+¥(v/c)®]/(2x€r)
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Moon and Spencer Version of Ampere's Equation

The third method looked at is a version of Ampere's Force equation
as developed by Moon and Spencer. It is a part of their field free
electrodynamics that avoids the mathematical construct of electric
fields. In addition, no corrections for relativity are needed ih their
model. Moon and Spencer's formulation gives the force between two
charges as a sum of terms that depend on position, relative velocity,

relative acceleration and the magnitude and rate of change of charge as
F Q1 v,?
—_— = - - . 2
Q2 r an€relc) (171.8-cos®e)

_ s Q1 dv
a 4rx€c?r dt

1 d o
r 4x€ dr'r

E3.3.1

The first term is the Ampere force, where v is the relative velocity
between Q1 and Q2, © 1is the angle between the unit vector in the
direction of the relative velocity and the unit vector in the radial
direction between the two charges, and r is the radial distance between
Q1 and Q2. This is Ampere's original equation [15] and is equivalent to
the Biot-Savart law. It includes the cross-product term (vXB) in the
Lorentz force equation. The second term is due to the relative
acceleration between Q1 and Q2 and is in a direction opposite to the
direction of acceleration. This term is equivalent to the force on a
charged particle in the presence of a time varying magnetic field aﬁd
is equivalent to Faraday's 1law of- induction. The third term contains
the Coulombic force for constant Q and the equivalent of displacement
current for a varying Q. This investigation is interested only in

constant charge densities and velocities so the Ampere force and the
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coulombic force are the only terms in Moon and Spencer's formalism that
apply. Stating the Ampere force in differential form gives

dF2/Q2 = dQi(v/c)?[1-1.5:cosB8]/(4wER?) E3.3.2

where: v is the relative velocity between Q1 and Q2
6 is the angle between the velocity vector v and
the direction vector between Q1 and Q2
For the case of a current modeled as an infinitely long line charge q

[coulombs/meter] moving at velocity v in the z direction [25], equation

3.3.2 becomes

F2/Q2 = me qg(v/c)[1-1.5:cosB]/(4n€ER?) dz E3.3.3
Since there are mixed variables (8,R,z) within the integral sign that
are not independent, they must be rewritten.

R? = r2+z2, and z = r-=cot@
Solving for dz and R in terms of the r and 8

R?2 = r2[1+cot?6] and dz = -r=csc?6 de
From inspection, every charge element in the positive z direction has a
corresponding charge element in the negative z direction that is moving
in opposite directions. This has the effect of yielding a net zero
force on the charge at location 2 (Table 2) in the =z direction.
Consequently we are only interested in the force in the r direction
that is non-zero and it is equal to sinB:dF2/Q2. Equation 3.3.3 can now
be written with the proper substitutions and appropriate change in the
limits of integration.

at z=-o» 6=n and at z=« 6=0

_ . [0 , ~r=sinBcsc?6[1-1.5co0s20]
F2/1 ol jn a(v/e) 4rn€r2[1+cot?0]

de
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Using the relationship csc?B=1+cot?6, this expression can be simplified
and easily integrated to vield

Fz/1 = Q2:q(v/c)?/(4n€r)

This expression can then be applied to the cases I-XV that are of
interest.

Case I becomes the sum of four terms very similar to the approach
used in relativity.

/c)?/(4n€r)]
/c)?/(4r€r)]

/c)z/(4n€r)+qel(v
/c)z/(4n€r)+qel(v

f2/1 - qu[qpl(vpl/pz
* 90091 (Vg e

el/p1l
el/ez E3.3.4
This equation only includes the forces due to relative motion and for
cases where there is a net charge the coulombic forces between charge
distribution'l and 2 must also be included. If this is done for the
general case, an expression is obtained that is equivalent to equation
3.2.2, that of the first order Special Relativity approach 'with the
only exception that the relative velocities are opposite. But since the
relative velocities are squared, this has no effect on the results they
vield. It can be concluded here that this approach is equivalent to
that of Special Relativity for the cases of interest in this
investigation. The identical results obtained from Special Relativity

and the Moon and Spencer version of Ampere force law are tabulated in

Table 4.
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Table 4. Force Between Relative Moving Charge, Results of Special
Relativity and Moon and Spencer.
% % Radial force between line charge, f [N/m] E
? Case #% or line charge and point charge, F [N] i
E % Special Relativity § Moon and Spencer E
|1l -atverr/eemer) | -qt(v/e)?/(2n€r)
% II i q?(v/c)?/(2x€Er) ; q?(v/c)?/(2x€r) :
; 1 -Qa(v/e)?/(2x€r) ﬁ -Qq(v/c)?/(2x€r)
? 1V f -q%(v/c)?/(2r€r) & -q%(v/c)?/(2xr€r)
% Y ; q?(v/c)?/(2r€r) ; q%(v/c)2/(2n€r)
i ? ~q?(v/c)?/(2x€r) § ~q2(v/c)?/(2x€r) |
; VIII E q?(v/c)?/(2x€r) § q?(v/c)?/(2r€r) ;
é IX ? -q?(v/c)?/(4n€r) % -q?(v/c)?/(4n€r) i
% X | qi(v/c)*/ (an€r) ; q?(v/c)?/(4x€r) é
é X1 -q%(v/c)?/(2r€r) % -q?(v/c)?/(2x€r) %
i XIT | q?(v/c)?/(2n€r) % q2(v/c)?/(2xr€r) é
| XIII é q?/(2x€r) % q?/(2r€r)
XIV ? qz[1+2(v/c)?]/(2x€Er) ? q?[1+2(v/c)?)/(2n€r) |
XV ? -Qq[1+%(v/c)?]/(2x€r) % -Qq[1+%(v/c)?]/(2r€r) %
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CHAPTER 4

INTERPRETATION OF RESULTS AND CHOICE OF BASELINE

In the previous chapter, three different analysis techniques were
employed to determine the force between fifteen combinations of
relative moving charge. They consisted of the Biot-Savart law, Special
Relativity , and the Moon and Spencer version of the Ampere equation.
It was found that the two analysis methods based on relative moving
charge (Special Relativity and Moon and Spencer) where equivalent to
each other but yielded different results from the Biot-Savart law (a
formalism based on currents and magnetic forces). Table 5 summarizes
the two different results and will be useful for comparison.

The cases where the results differ between the Biot-Savart law and
Special Relativity, are marked (*) for reference since they are of

special interest.
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Table 5. Force Between Relative Moving Charge, Comparison of Results of

Chapter 3.
; f Radial force between line charge, f [N/m] ?
[ Case #; or line charge and point charge, F [N] é
5 2 Biot-Savart law g Special Relativity
i I % -q*(v/c)?/(2r€r) § -q*(v/c)?/(2n€r)
i 11 E q?(v/c)?/(2r€r) 2 q?(v/c)?/(2x€r) %
i* 3 0 { o qq(v/e)t/(emer) |
% v % -q*(v/c)?/(2n€r) f -q2(v/c)?/(2n€r)
i v i q?(v/c)?/(2r€r) i q?(v/c)?/(2x€r) !
i VII ; —qziv/c)z/(ZxEr) % -q?(v/c)?/(2r€r) i
i ; ! !
VI @t(ve)/(emer) | ar(v/e)y/(amer)
%* 1X f -q*{v/e)*/(2n€r) § -q*(v/c)?/(4n€r) §
f* X ? g2(v/c)?/(2x€r) § q2(v/c)?/(4x€r) é
% - § -q*(v/c)*/(2n€r) % -q2(v/c)?/(2n€r)
i XI11I % q?(v/c)?/(2n€r) % qg?(v/c)?/(2r€r)
%* XIII i q?[1-(v/c)?]/(2n€r) § q?/(2n€r)
%* X1V E q?[1+(v/c)?]/(2r€Er) f q2[1+2(v/c)?]/(2n€Er)
x X E -Qq/ (2r€r) g -Qq[1+%(v/e)?]/ (2n€r) |

*¥ - results differ

As seen in Table 5, the results differ between the two sets for
cases III, IX, X, XIII, XIV, and XV. At this point, it must be resolved
as to which results to accept as the most physically correct. For
'true' current elements, cases I, II, IV, V, VII, VIII, (not electron
beams or stationary charge) the results are all in agreement. From

these cases, it can be concluded that the Biot-Savart law yields the
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same results as relativity for currents flowing in charge neutral
mediums. For other cases, there are discrepancies and the appropriate
value must be chosen. By looking at the physical nature of the
different methods, some reasons can be established for the proper
choice.

The physical interpretation of relativity or Moon and Spencer is
that the force between current elements is due to the relative velocity
between charge and can be interpreted as an electric force. 1In the
Biot-Savart law, the force between current elements is modeled as a
magnetic force. These two physical interpretations are different and
can help explain the difference in the results. In the case of the
Biot-Savart law for the configurations investigated here, when there
isn't a magnetic field at both 1 and 2, such as cases III, IV, and V,
the result is-zero. In the other cases that differ, there exists a
current and a magnetic field at both 1 and 2, and it appears that the
nature of the current has an effect on the results which the Biot-
Savart law does not address. The Biot-Savart law does not distinguish
between different types of currents. It cannot differentiate between a
current flowing in a metal, a plasma or a charge particle beam. To
obtain the most accurate value of the force between current elements or
moving charge it appears that the details must be known concerning the
charge densities and their respective velocities. Relativity and Moon
and Spencer require these details and thps generate more descriptive
results. This is another example where an analysis of the parts (in
this case the individual charges and there velocities) does not equal

an analysis of the whole (the currents).
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It appears that the first order application of relativity or the
Moon and Spencer version of the Ampere force equation yield better
results as they appear to be more rigorous in this regard.
Consequently, the baseline or the results that will be used as a
comparison to the moving flux model will be those generated by
relativity or Moon and Spencer.

As far as the ease of use, the method of Special Relétivity and
Moon and Spencer require the appropriate relative velocities and charge
densities and these may be difficult to obtain. Once these are
obtained, a straight forward application of the formalism yields a
solution. The Biot-Savart law requires only the currents to be known
which can usually be directly determined. This requires less detail of
information, but yields results that are not consistent with
relativity. Relativity or the Moon and Spencer approach has the added
advantage that one can use calculated results to predict charge

velocities by working backward from known experimental data.
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CHAPTER 5§

MOVING MAGNETIC FLUX APPROACH

A baseline of the actual magnitude of forces between moving charge
has been established and will now be compared to the results generated
by the moving magnetic flux approach. The moving magnetic flux approach
begins with the assumption that the magnetic flux surrounding a current
actually moves with the charge carriers that comprise the current.
Unlike the formalisms that the baseline is generated from, the moving
magnetic flux model is based on magnetic forces and flux not just
electric fields and their forces. A recent proponent of this theory, W.
J. Hooper, did not try to determine the actual magnitude of the
magnetic flux drift velocity in relation to the charge carrier
velocity, but made the further assumption that these two velocities are
equal. Starting with this assumption, a general expression of the
moving magnetic flux approach will be derived that can be used to
determine the force between relative moving charge for all of the
fifteen cases explored in Chapter 3. This expression and the results it
generates will be compared to the results generated by the first order
application of Special Relativity that has been chosen as a baseline.
Differences will be noted and if possible a value of magnetic drift
velocity will be derived that better matches the baseline results.

The moving magnetic flux approach uses the Lorentz force equation,

but not in the classical sense since a velocity is ascribed to the
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magnetic flux surrounding a current. Starting with the Lorentz force
equation

f = q

2/1 (B +v

Bl) E5.1

2 2/BlX

where:

E1 is the electric field of 1

Bl is the magnetic field of 1

Va/B

is the velocity of q, with respect to B1

and using the appropriate values of magnetic and electric fields and
relative velocities, an equation can be derived that can be applied to
all the cases being investigated. To obtain a general expression of
equation 5.1 that can be used for all fifteen cases, the electric and
magnetic fields of charge distribution 1 (Table 2) are broken wup into
their constituent parts and the charge in 2 1is also described as a
superposition of two different 1line charges. Rewriting, equation 5.1
becomes

f 1/(2xc?€r)

1/(2rc2€r)

2/1 = 9209 1"p2/8p1 Ip1/p2"%1*Vp2/Be1 Le1/p2
i qez[qp1+ve2/Bp1;Ipl/e2+qe1+ve2/Be1rIel/e2
The currents can be further broken down and written in terms of the

appropriate charge and velocity.

Io1/p2 = %1 Vp1/p2
Te1/p2 = %1 Ve1/p2
Ipl/e2 = qplzvpl/ea
I

el/e2 qelrvel/ez
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Since it is assumed that the magnetic flux is moving along with the
charge in 1, the relative velocities of the charge in 2 with respect to
the magnetic flux in 1 can be expressed as relative velocities between

the charge in 2 and the charge in 1

Vp2/Bp1 - Vp2/p1
v =v
p2/Bel p2/el
v = v
e2/Bpl e2/pl
v = v

e2/Bel e2/el
Being aware of the definition of current direction and the sign
generated by the cross-product term and also letting the charge carry
its own sign, the magnitudes of the relative velocities can be used and

the total expression becomes

£ = qu{qp1[1+(v

274 2
2/1 p2/p1/c) ]'qel[1+(vp2/e1/c) ]}/(ZxEr)

* qez{qpl[1+(Ve2/p1/c)z]+qe1[1+(ve2/e1/c)2]}/(2ner) E5.2

This is the same as equation 3.2.8, the general expression of Special
Relativity, with the exception that the (v/c)? terms do not have a
factor of one half multiplying them. Using equation 5.2 to calculate
the force between 1 and 2 for the fifteen cases investigated yields the

results tabulated in Table 6.
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Table 6. Force Between Relative Moving Charge, Baseline Results
Compared to Hooper version of Moving Magnetic Flux Approach.

: f Radial force between line charge, f [N/m] i
: Case #; or line charge and point charge, F [N] :

' % Special Relativity ? Moving Mag. Flux Theory;
; I ; -q*(v/c)?/(2n€r) i -q*(v/c)?/(2r€r) %
; 11 é g?(v/c)?/(2n€r) i q?(v/c)?/(2r€r) :
?* 111 i -Qq(v/c)?/(4r€r) % -Qq(v/c)?/(2r€r) E
; 1v ? -q2?(v/c)?/(2r€r) ; -q?(v/c)?/(2r€r)

i v % q?(v/c)?/(2xr€r) E q®(v/c)?/(2r€r) ;
v o o
i VII | -q?(v/c)?/(2x€r) | -a*(v/c)?/(2nEr)

? VIII ; q%(v/c)?/(2n€r) 5 g*(v/c)?/(2r€r)

i* IX % -q*(v/c)?/(4x€r) } 0 ;
i* X é q?(v/c)?/(4r€r) E q®(v/c)?/(n€r) ?
Lo gtwoesen) | r(v/e)/(emer) |
i* X11 ; q*(v/c)?/(2x€Er) % q*(v/c)?/(4x€r) ?
% XIII i q2/(2r€r) E q?/(2x€r) ?
i* XIV % q*[1+2(v/c)?]/(2n€Er) i q*[1+4(v/c)*]/(2x€r) :
?* XV % -Qq[1+%(v/c)?]/(2r€r) % -Qq[1+(v/c)?]/(2n€r) |
F : .

*¥ - Results differ

Since equation 5.2 is different than equation 3.2.8, it stands to
reason that there are some differences between the baseline values and
those generated by the moving magnetic flux model. The cases that are
the same, I, II, IV, V, VII, VIII are all configurations where the

system at both 1 and 2 is a true current as commonly accepted. This
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indicates that for these cases, the magnetic flux velocity is arbitrary
and has no effect on the outcome as long as both current 1 and 2 are
flowing in materials where charge neutrality is maintained. The cases
that do differ are off by a factor of two. From these results, it can
be concluded that the magnetic flux velocity cannot equal the charge
velocity if one is to obtain the same results as the baseline. It must
be stressed here that it is assumed that the baseline is correct, and
only experimental evidence can determine if this is true.

If the definition of current as I=qv is used, the only way these
results (cases III, IX, XII, XIV, XV) can be matched is to assume a
magnetic flux drift velocity of one half the charge carrier velocity.
This may seem like an arbitrary action, but one must remember that
formulas such as the Biot-Savart and the Moon and Spencer version of
Amperes current law were derived to match empirical information.
Consequently, this is a valid model as long as physical phenomena is
described by it accurately.

Rewriting equation 5.2 with the added assumption that the magnetic
drift velocity is identically one half the charge carrier drift

velocity, the following is obtained

F2/1 = qp2(qp1[1+x(vp2/p1/c)z]"'qel[l*!‘(vpz/el/c)z]}/(27t€r)

2 & 2
* Ggpflay, [1+%(vy, 1y /) B+ay, [1+%(v,, 1 /0) 21}/ (2nEr) . o5 3
This relationship 1is equivalent to the Special Relativity
approximation and will yield identical results to all the cases looked
at. This moving magnetic flux model matches relativity and furthermore

may actually be a physical explanation for what is happening. To retain

the formulation in terms of magnetic fields and the cross product term,
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we can define the magnetic field velocity of 1 as the weighted average
of all the charge carrier velocities in 1 with respect to 2 that
contribute to the current, summed vectorially and divided by 2.
Expressed mathematically as

Vm/q

[ZniLvi/q]/znt for n=0 to i

where; = magnetic flux drift velocity

&
|

= fractional composition of charge i
= velocity of charge i
= total charge = Sni
In addition, one must be careful to use the values of currents in
1 that the charge in 2 actually sees, not the current measured in some
rest frame. This only has an effect in cases where the total charge
distribution in 1 is not neutral, such as an electron beam. For a
neutral conductor the current is the same in all reference frames.
Table 7 is a summary of the results obtained for all fifteen cases
using the different analysis methods that have been explored. It is

interesting that there can be such variation among the different tools

of EM theory.
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Table 7. Force Between Relative Moving Charge, Summary of Results.

“Moving charge config. | Radial force between line charge, fari N1 T
Metallic conducter = m | or line charge and point charge, Fa.,, [N
gzxrfi’”gzgf” ; “Biot-Savart Eq.| Baseline, Moon | Moving Magnetic| Moving Magnetic
e i or Lorentz Eq. | and Spencer or | Flux, Lorentz | Flux, Lorentz
Cuprent. ¢ lment - withv =10 Relativit Eg. with v =v Eq. with v =kv
Stationary charge  * om ' y L mnog o mta
.oom -a*{v/c)? -gi(v/e)? sai(e/v)t -g2(v/c)®
Yoon oner 2xer oner 2ner
no"Y oZ{v/e)? g2(v/e)* ailv/e)’ al{v/e)?
m <~ 2ner 2ner 2xer 2xer
m "7 ; =Qafv/e)? -0a(v/e)? alv/e):
i * buer 2ner dxer
i -a%(v/c)? -a?(v/e)? za®(v/e)® -g3(v/c)?
IV rosneod - .- o R
i 2rner 2rer 2ner 2rer
v o griv/e)’ a2(v/e)? aZ(v/e)? 9i{v/e)*
i <= 2Xer 2ner 2ner 2ner
v ) 0 0 0 0
vigp 7 a2 (v/e)? =92 (v/e)? =gt (v/e)? zgt(v/e)”
i= 2rer 2ner 2ner 2mer
g " Q(v/e) | alv/e) g(v/e)? a*(v/e)?
<= ner * 2xer 2ner 2xer
x PO zat(v/e) =2(v/e)? . g2 (v/e)?
) e = 2ner drer dxer
y o gz(v/e)? g{v/e)* g’{v/e)? av/e)*
e <~ oxer dxer xer dxer
i 17 gZ(v/c)* g{v/e)* g{v/e)? g2lv/e)*
e = 2xer 2rer 2xer 2xer
ap 1o g*(v/c)* 4*(v/c)? g2(v/e)? g(v/e)?
e <- 2xer 2xer dxer 2xer
e-> g*[1-(v/e)?®] -t gt .
X111
e - 2xer 2xer 2xer 2xer
iy €7 g?[1+(v/c)?] g?(1+2(v/e)?] | q*[1+4(v/c)®] | qr[1+2(v/c)®]
e <= 2rer 2xer 2rer 2xer
W & Qo -Qa1+k(v/c)?) | -Qal1+(v/c)®] | Qql1-¥(v/c)®]
X 2rer 2xer 2xer 2ner
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CHAPTER 6

MOTIONAL ELECTRIC FIELDS ASSOCIATED WITH THE
MOVING MAGNETIC FLUX MODEL

In Chapter 2, the unique properties of the motionaL electric field
associated with 'cutting lines of magnetic flux' was described and
later in Chapter 5 it was shown that a moving magnetic flux approach
can be used to model the force between relative moving charge. This
moving magnetic flux approach gives the same results when applied to
configurations of relative moving charge that a exhaustive application
of special relativity does. There may be some advantages to the moving
magnetic flux model over other theories such as special relativity or
Moon and Spencer, due to the peculiar qualities that are associa@ed
with the motional electric fields that arise in the moving magnetic
flux model.

Motional electric fields, although having the same mathematical
expression as static electric fields or those due to transformer
action, are physically different and can easily be distinguished from
the other types. The assumption that the magnetic flux associated with
moving charge actually moves with the charge, results in a motional
electric field surrounding the charge. This motional electric field is
the same magnitude as the increase in the static electric field that
relativity predicts due to the charge's motion. The moving magnetic
flux model can be concluded to have advantages over the others

formalisms that have been looked at because of the nature of the
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motional electric field that it predicts. The moving flux model is more
intuitive than relativity in its description of physical effects.

The motional electric field is immune to electrostatic shielding,
since by definition, it is a magnetic phenomena. This was documented by
Hooper [11] and also verified at Montana State University [24]. Since
motional electric fields arise from relative motion with respect to
magnetic flux, any material that magnetic flux can penetrate will not
shield a motional electric field. What is suggested by the results in
Chapter 5 is that not only is a motional electric field associated with
relative motion with respect to magnetic flux, but that there also is a
motional electric field associated with all moving charge. This
motional electric field is the same magnitude as a correction due to
relativity. The only way that this motional electric field (due purely
to relative moving charge) can occur is if the magnetic flux associated
with the moving charge moves with the charge. By comparing the motional
electric field to a set of results accepted as correct, the velocity of
the moving flux was determined to be exactly one half the velocity of
the moving charge. Alfhough the moving magnetic flux model only matches
the results of Special Relativity to a second order approximation, it
does match a version of the Ampere equation by Moon and Spencer
exactly. In addition, Moon and Spencer claim that charge and mass are
invariant and Special Relativity is not needed [14]. It can then also
be surmised that the moving magnetic flux model does not need to be
corrected for relativity and assumes invariant charge and mass.

It is commonly thought that the force between currents 1is a

magnetic one and thus cannot be shielded electrostaticly. Yet in
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Chapter 3, it was shown that the force between currents (even two that
are in metallic conductors) can be predicted using Special Relativity
applied to the electric fields of the charge of the currents. The
question arises whether a correction due to relativity is shieldable or
if the correction due to relativity is actually the common phenopena of
flux cutting. This question can only be answered with an exhaustive
experimental investigation. What is suggested is a reworking of
Ampere's experiments on forces between current elements with the added
complication of shielding one or the other of the currents with various
materials held at fixed and floating potentials. In addition, the
current elementé in different media, such as metals, plasmas, etc.
should be investigated.

More fundamentally, the motional electric field surrounding a
current should be measured directly. Measuring this field 1is exactly
what Hooper appears to have done. The experimental setup required to
accomplish this would be similar to the apparatus Hooper used to
measure the motional electric field surrounding his generator. A source
of moving charge to generate the motional electric field and a
detection system to measure the motional electric field needed.
Hooper's source of moving charge was the conduction electrons 1in a
copper coil. Higher velocity charge such as in charged particle beams
or conduction electrons in superconducting materials would have the
advantage over Hooper's experiment of producing motional electric
fields of greater intensity. This would reduce the sensitivity of the
instrumentation needed to measure the motional electric field. Hooper's

detection system consisted of a capacitor that was charged by the
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motional electric field and an electrometer to measure the voltage on
the capacitor. This system can be used or a device (such as a torque
pendulum [13]) to measure force on a charged particle could be used to
detect the motional electric field.

A project was initiated at Montana State University that would
measure the motional electric field surrounding an electron beam. An
experiment with an electron beam as the source of moving charge and a
shielded capacitor and electrometer as the detector was proposed.
Limitations in size of the electron beam that could be generated and
the sensitivity of equipment (specifically an electrometer) prevented
the completion of this experiment.

Even more interesting than proving the existence of this electric
field that is associated with moving charge, is the investigation of
its properties. It is suggested by the moving magnetic flux hypothesis
that it is a motional electric field, but relativity does not give any
insight into the nature of the effect other than it does exist.
Consequently, an experimental verification should be designed with the
added intention of determining its physical characteristics.

Experiments that study different types of shielding are critical.
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CHAPTER 7
CONCLUSIONS AND SIGNIFICANCE OF WORK

Even though the theory of electromagnetism is considered mature
and well established, there are still some unresolved issues in the
theory. One such issue has been explored here, the premise of whether
the magnetic field surrounding a moving charge actually moves with the
charge. The most recent and avid proponent of this idea was W. J.
Hooper. His claim, that the magnetic flux induced by moving charge
moves with the charge, results in a motional electric fiéld associated
with all moving charge. The motional electric field is the direct
result of the type of induction associated with cutting lines of
magnetic flux or spatial movement with respect to magnetic flux. This
induction is different than the type due to linking time changing
(motion in time) magnetic flux. The two types of induction generate
different types of electric fields.

The motional electric field, due only to thevmotion of charge (if
the induced magnetic flux moves with the charge), has been shown here
to be contrary to classical EM theory, but is the same magnitude as a
correction factor due to relative motion that the theory of Special
Relativity predicts. 1In addition, an alternative version of Ampere's
current law also predicts an electric field associated with moving
charge that is solely dependent on the charge's magnitude and velocity.

The equivalence between a force predicted between relative moving
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charge by both relativity and a form of Ampere electrodynamics raises
some serious questions about relativity. If relativity is used to
calculate the force between current elements, the same‘results are
obtained as measured by Ampere and predicted by the electrodynamic
models generated from his work. Possibly, the force between current
elements is a verification of relativity and Ampere electrodynamics are
inconsistent with relativity. Or relativity is not the appropriate
explanation for electrodynamic forces in materials. Either way, this
issue needs to be explored.

A complete agreement between the 'moving magnetic flux premise’,
Special Relativity to second order, and the Moon and Spencer version of
Ampere's law is obtained when the magnetic flux drift velocity is
assumed to be one half the charge carrier drift velocity in the moving
magnetic flux model. It is significant that a relativistic correction
can be predicted by the moving magnetic flux idea as well as a version
(Moon and Spencer) of Ampere's current law. The differences between the
moving magnetic flux model and Special Relativity or Moon and Spencer
are qualitative in nature and have to be determined experimentally. The
electric field or force on charge associated with relative motion with
respect to a magnetic field has characteristics that distinguish it
from static electric fields associated with charge distribution or even
the induced electric field due to time changing magnetic fields. Since
motional electric fields have a unique .'finger print', it may be
possible to devise an experiment to distinguish between a motional
electric field or a electric field due to relativity transformation

(that would be electrostatic in nature) on an electric field.
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Some of the unique properties of motional electric fields are
their reaction to different materials and types of shielding. They are
immune to shielding configurations such as faraday cages held at fixed
potentials. Motional electric fields can also be generated in regions
where the total magnetic field can sum to zero. This effect can be used
as another determining criteria in experiments in determining the
nature of an EM effect.

It can be concluded that the moving magnetic flux idea that
associates a motional electric field with all moving charge raises some
interesting points concerning foundational EM theory. It's
incorporation into classical EM theory may preclude the necessity of
correcting for relativity. In fact, for the cases explored here if both
moving magnetic flux and relativity are considered, the results
obtained would be in disagreement with those considered correct. The
concept of moving magnetic flux may also help to dispel some of the
paradoxes of electrodynamic forces especially in areas that there is
disagreement between classical Maxwellian field theory and Ampere

electrodynamics applied to materials.
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